If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3b^2+42=25b
We move all terms to the left:
3b^2+42-(25b)=0
a = 3; b = -25; c = +42;
Δ = b2-4ac
Δ = -252-4·3·42
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-11}{2*3}=\frac{14}{6} =2+1/3 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+11}{2*3}=\frac{36}{6} =6 $
| w/2+ 7=11 | | 2a-2=3a-6 | | 3-2(4x-6)=-25 | | –4x–13+x=4x+18 | | -10-10x=-150 | | x^2+5x+2x+10=180 | | c=3.14(7.9) | | 0=xˆ2+10x+14 | | 2y+8=3y+9 | | 16-2x+3x=-7x | | 2+(2)(x+3)+9-5=32 | | 3x+2=2+2x | | 2(-3+x)=16 | | `7-4x=-4x-13-2x` | | d=3.14(7.9) | | 6g=30* | | 5x-30=7x | | 138=6+3(9-7a) | | 2(2)-8y=14 | | 6m=+10 | | 7x+11=12x-4 | | 7y-20=5y-38 | | 153+75b=1500 | | 2(2x+9)=7x-12 | | 2x+8=x=9 | | 7x-24=11x-1 | | 4-8y=14 | | 41+3x-1=58 | | 3x-29=8x+17 | | (3x-2)(-1/3)-(x/2-5)(-1/3)+x-8=0 | | a+129=164 | | 8y−7=65 |